

Thermochimica Acta, 243 (1994) 95-100

thermochimica acta

Thermal change of SnI_2 thin films. Part 3. Isothermal change under light radiation

Y. Sawada *, M. Suzuki¹

Department of Industrial Chemistry, Faculty of Engineering, Tokyo Institute of Polytechnics, 1538 Iiyama, Atsugi-shi, Kanagawa 243-02, Japan

(Received 14 June 1993; accepted 21 January 1994)

Abstract

The influence of light radiation on the thermal change of SnI_2 thin films heated at 50, 100 and 150°C in air for 6 h was investigated using weight measurement and X-ray diffraction analysis. The thermal change was accelerated by heating and light radiation. Radiation with a tungsten lamp (500 W, 25 cm from the film) was more effective than room light (mainly from fluorescent lamps). Weight loss at 150°C stopped at 21.1% and 21.5%, based on specimen weight, under radiation from room light and from a tungsten lamp, respectively. These values approximately agree with the 20.2% expected for the reaction proposed in our previous papers (Thermochim. Acta, 232 (1994) 29-36; 37-45), $2SnI_2(s) +$ $O_2(g) \rightarrow SnI_4(g) + SnO_2(s)$. This reaction mechanism is supported by the presence of diffraction peaks for SnO₂. The higher values of the apparent end point (25.0% and 25.5%) at 100°C are interpreted as indicating incomplete evaporation (sublimation) of SnI₄.

Keywords: Isothermal; Light; Radiation; Thin film; Tin oxide; XRD

1. Introduction

Kuku [1] and Kuku and Green [2] proposed a novel lithography process via the photo-oxidation of an SnI_2 film to produce a transparent conductive film of SnO_2 . The isothermal and non-isothermal changes of SnI_2 films in air without light radiation were investigated in our previous papers [3, 4]. The oxidation reaction of

* Corresponding author.

0040-6031/94/\$07.00 © 1994 – Elsevier Science B.V. All rights reserved SSDI 0040-6031(94)01735-Y

¹ Present address: Kojundo Chemical Laboratory, Co., Ltd., 5-1-28 Chiyoda, Sakade-shi, 350-02, Japan.

 SnI_2 to form SnI_4 and SnO_2 was detected. In the present study, the influence of light radiation on the isothermal change is investigated.

2. Experimental

The SnI₂ films (thickness $\approx 0.5-1 \,\mu$ m) were deposited by vacuum evaporation onto substrates at room temperature, as previously described [3]. The films as deposited on the substrate were immediately placed on a hot plate heated at a predetermined temperature (50, 100 and 150°C; fluctuation $\pm \approx 7^{\circ}$ C).

The films were heated isothermally in air for a predetermined period under room light (mainly fluorescent lamps) or a tungsten lamp (500 W, 25 cm from the film). The heat treatment and the evaluation of the quenched films were repeated for a total heating time of 6 h. The film weight was measured using an ultra-microbalance (Sartorius S4; sensitivity, 0.1 μ g). The X-ray diffraction spectra were recorded using a conventional θ -2 θ type diffractometer with Ni-filtered Cu radiation; 40 kV, 45 mA (Rigasku RAD-IIIC system). A film heated at 100°C for 6 h under a tungsten lamp was also analyzed using a thin-film type X-ray diffractometer with monochromated Cu radiation; 50 kV, 300 mA (Rigaku RINT-2000 system) at different incident angles (0.5 and 8.0 deg).

3. Results and discussion

3.1. Weight change

Isothermal weight changes for SnI_2 thin films in air under room light and tungsten lamp radiation are shown in Figs. 1 and 2, respectively. Weight loss

Fig. 1. Isothermal weight changes in air for SnI_2 thin films under room light radiation. Fig. 2. Isothermal weight changes in air for SnI_2 thin films under tungsten lamp radiation.

was accelerated by heating as well as by light radiation when compared with the previous results without light radiation [4] (not shown in the figures). Significant photo oxidation was observed. Radiation from a tungsten lamp was more effective under the present experimental conditions. In these figures, the expected weights for the reactions $SnI_2(s) + O_2(g) \rightarrow SnO_2(s) + I_2(g)$, and $SnI_2(s) + 0.5O_2(g) \rightarrow SnO(s) + I_2(g)$ are indicated for reference. Weight loss at 150°C stopped at 21.1% and 21.5%, as determined from the weight of the film under room light and tungsten lamp radiation, respectively. These values agree approximately with that expected (20.2%) for the reaction proposed in our previous papers [3, 4]

$$2\operatorname{SnI}_{2}(s) + \operatorname{O}_{2}(g) \to \operatorname{SnI}_{4}(g) + \operatorname{SnO}_{2}(s).$$
(1)

The thermal change was accelerated by heating; the weight loss proceeded more slowly at lower temperatures. At 100°C, the apparent end points (25.0% and 25.5%) were higher than those at 150°C. Sigmoidal curves were observed at 50°C. The higher values of the apparent end point at $\leq 100^{\circ}$ C can be attributed to the incomplete evaporation (sublimation) of SnI₄.

3.2. X-ray diffraction analysis

X-ray diffraction spectra for a thin film of SnI_2 heated at 50, 100 and 150°C under room light and then quenched are shown in Figs. 3–5, respectively. The spectrum for the film heated at 50°C for 5 min and then quenched (Fig. 3) was approximately identical with the as-deposited pattern [3] (not shown). The preferred crystal orientations of α - [5] and β -SnI₂ [6] were observed, except for very weak peaks of randomly oriented α -SnI₂. An unknown peak was attributed to

Fig. 3. X-ray diffraction spectra for an SnI₂ thin film heated at 50°C under room light radiation and then quenched: \blacksquare , α -SnI₂; \bigcirc , β -SnI₂; \bigcirc , α - and/or β -SnI₂; \bigtriangledown , SnI₄; ?, unreported peak of α - or β -SnI₂. The log₁₀ (diffraction intensity) is plotted to emphasize the minor phases.

Fig. 4. X-ray diffraction spectra for an SnI_2 thin film heated at 100°C under room light radiation and then quenched. Symbols as in Fig. 3.

Fig. 5. X-ray diffraction spectra for an SnI₂ thin film heated at 150°C under room light radiation and then quenched: \blacksquare , α -SnI₂; \bullet , β -SnI₂; \bigcirc , α - and/or β -SnI₂; ?, unreported peak of α - or β -SnI₂; ∇ , SnI₄; \blacktriangle , SnO₂.

unreported peaks of α - and/or β -SnI₂; see our previous paper [3]. Strong diffraction peaks for randomly oriented α -SnI₂ and SnI₄ appeared after 30 min. Their peak intensities increased up to 2 h (relative weight; 90.3%) before decreasing. A very weak β -SnI₂ peak was observed up to 6 h when further evaluation was abandoned. As shown in Fig. 4, the predominant phases detected for the film quenched from 100°C were α -SnI₂ (random orientation) and SnI₄, up to 4 h; a very weak β -SnI₂ peak was observed up to 2 h. The predominant peaks for the film quenched from 150°C (Fig. 5) changed from randomly oriented α -SnI₂ and SnI₄ peaks to weak SnO₂ [7] peaks.

Fig. 6. X-ray diffraction spectra for an SnI_2 thin film heated at 50°C under tungsten lamp radiation and then quenched. Symbols as in Fig. 3.

Fig. 7. X-ray diffraction spectra for an SnI_2 thin film heated at 100°C under tungsten lamp radiation and then quenched: \blacksquare , α -SnI₂; \blacklozenge , β -SnI₂; \blacktriangledown , SnI₄.

X-ray diffraction spectra for the films heated at 50 and 100°C under tungsten lamp radiation and then quenched are shown in Figs. 6 and 7, respectively. Peaks were observed up to 2 h for the film quenched from 50°C (Fig. 6); the α - and β -SnI₂ peaks (preferred orientation) were stronger than those formed under room light conditions. Peaks were observed only up to 5 min for the film quenched from 100°C (Fig. 7); a halo with no diffraction peak was also confirmed using a thin-film type diffractometer for the film heated at 100°C for the longest heating period (6 h). The film heated at 150°C showed broad SnO₂ peaks (not shown), even for the shortest heating period (5 min).

The results of the X-ray diffraction analysis are summarized in Table 1, together with the results of our previous paper [4]. The predominant phases detected for the quenched films changed approximately in the following order; α -SnI₂ (preferred orientation), β -SnI₂ (preferred orientation), α -SnI₂ (random orientation), SnI₄ and SnO₂. Crystallization of SnO₂ was observed only for the films treated at 150°C at ≤ 24.4 wt%, which corresponds to $\approx 5\%$ of the SnI₄ that remained unevaporated. No diffraction peak was detected after the disappearance of the iodides at $\leq 100^{\circ}$ C so that formation of amorphous lower oxides such as SnO may be possible at low temperature. Heating and light radiation, especially with a tungsten lamp, accelerated the change.

Treat. temp.	XRD peaks detected for the quenched films	Condition of light radiation and treatment period																	
		Dark (no light)						Room light						Tungsten lamp					
		5 min	30 min	1 h	2 h	4 h	6 h	5 min	30 min	1 h	2 h	4 h	6 h	5 min	30 min	1 h	2 h	4 h	6 h
50°C	$\begin{array}{c} \alpha - \mathrm{SnI}_2 \ \mathrm{p} \\ \beta - \mathrm{SnI}_2 \ \mathrm{p} \\ \alpha - \mathrm{SnI}_2 \ \mathrm{r} \\ \mathrm{SnI}_4 \\ \mathrm{SnO}_2 \end{array}$														8	8			
100°C	$\begin{array}{l} \alpha - \mathrm{SnI}_2 \ \mathrm{p} \\ \beta - \mathrm{SnI}_2 \ \mathrm{p} \\ \alpha - \mathrm{SnI}_2 \ \mathrm{r} \\ \mathrm{SnI}_4 \\ \mathrm{SnO}_2 \end{array}$																		
150°C	$\begin{array}{l} \alpha - \operatorname{SnI}_2 p \\ \beta - \operatorname{SnI}_2 p \\ \alpha - \operatorname{SnI}_2 r \\ \operatorname{SnI}_4 \\ \operatorname{SnO}_2 \end{array}$																		

Phases detected using X-ray diffraction analysis for the films quenched from various temperatures

Table 1

Key: p, preferred orientation; r, random orientation; ■, strong; □, weak.

4. Conclusions

The influence of light radiation on the thermal change of SnI_2 thin films was investigated. The thermal change was accelerated by heating and light radiation. Radiation with a tungsten lamp was more effective than using room light (mainly from fluorescent lamps).

Weight loss at 150°C stopped at 21.1% and 21.5%, as found from the specimen weights, under room light and tungsten lamp radiation, respectively. These values agree approximately with the 20.2% expected for the reaction proposed in our previous papers [3, 4], $2\text{SnI}_2(s) + O_2(g) \rightarrow \text{SnI}_4(g) + \text{SnO}_2(s)$. This reaction mechanism was supported by the presence of SnO_2 diffraction peaks. The higher values of the apparent end point (25.0% and 25.5%, respectively) at 100°C were interpreted as indicating incomplete evaporation (sublimation) of SnI_4 .

Acknowledgments

The authors thank the Ministry of Education, Science and Culture for a Grant-in-Aid for Scientific Research (C) 03650264 and Mr. T. Kubo, Rigaku Co. for the X-ray analysis using a thin-film type diffractometer.

References

- [1] T.A. Kuku, Thin Solid Films, 142 (1986) 241.
- [2] T.A. Kuku and M. Green, Thin Solid Films, 144 (1986) L119.
- [3] Y. Sawada and M. Suzuki, Thermochim. Acta, 232 (1994) 29-36.
- [4] Y. Sawada and M. Suzuki, Thermochim. Acta, 232 (1994) 37-45.
- [5] Joint Committee for Powder Diffraction File 25-975.
- [6] Joint Committee for Powder Diffraction File 40-877.
- [7] Joint Committee for Powder Diffraction File 13-111.

100